Data Dictionary Cache
Data Dictionary Cache
The dictionary cache retrieves and caches information about the tables accessed by Informix. This includes information such as column names, data types, indexes, and extents. Although Informix also places the actual pages for the system catalog tables, also known as partition pages, in the buffer pool, the dictionary cache is always used and generally presents a huge performance advantage for repeated access to the table information.

There are two onconfig parameters that affect the tuning of the Data Dictionary Cache. These two variables are:

DD_HASHSIZE

DD_HASHMAX

DD_HASHSIZE specifies the number of hash buckets or lists in the data dictionary cache, and must be a prime number, while DD_HASHMAX specifies the number of table entries per hash bucket, and is expected to be a non-prime number generally between 4 and 20. The default values for each are as follows:

DD_HASHSIZE 31

DD_HASHMAX 10

This means that there are 31 Buckets and each bucket can contain 10 tables, which in turn means that the instance can cache only 310 tables before it runs out of memory, and begins to grow dynamically. If Informix runs out of memory in the dictionary cache to add additional entries, you will have two potential problems:

· Performance: If your Data Dictionary cache is too small for your instance the instance will be constantly attempting to clean the cache to get space back, or constantly growing if all of the tables are still being used. In effect wasting I/O and potentially causing a performance bottleneck.
· Corruption: The potential for shared memory corruption while performing the work listed above.
Configuring the Data Dictionary Cache

When configuring the value for DD_HASHSIZE, IBM recommends that the value bet set to the prime number closest to the number of user tables for the entire instance. The reason why IBM recommends this value is the fact that the insertion of Data Dictionary entries is done via a hashing algorithm. The prime number requirement is because it is the most efficient number, from a performance standpoint, for the hashing algorithm. The reason why IBM suggests a prime close to the number of user tables in the instance is because of the desire to limit the number of entries per bucket, making retrieval of a cache entry extremely fast, however any value much higher than the number of user tables starts to make the cost greater than the benefit. Since the DD_HASHSIZE is set to a large value, it then follows that IBM recommends that DD_HASHMAX be set to a small value, in fact there is little reason to change the value at all, rather leaving it at the default value of 10. The primary reason not to lower the value is because any time you have a hashing algorithm, you can occasionally have different entries hash to the same location. So if we have a database instance with 2000 user created tables, IBM would recommend the following values:
DD_HASHSIZE 1999
DD_HASHMAX 10
Estimating Memory Consumption for the Data Dictionary Cache

The base overhead for the Data Dictionary Cache is as follows:

X1 = 24 + (40 * DD_HASHSIZE)

Below is the minimum cost of every Data Dictionary entry:

Y1 = 352 + (96 * Number of Columns per table)

Total size (rough estimate)

TS = X1 + (Y1 * (DD_HASHSIZE * DD_HASHMAX))

(Please note that Total size is not really as easy as the above,

because of two primary factors, the first is that Y1 is only for an individual entry, which is highly unlikely to represent the median of all entries, and the second is the pools can actually grow beyond DD_HASHSIZE for a short period of time)

Example:
Suppose you have an instance with 4 Databases, each database contains ~500 tables, and each table averages 10 columns. Configuring for a worst case scenario you are likely going to configure your data dictionary cache like the following:

DD_HASHSIZE 1999
DD_HASHMAX 10
This will mean that the Rough estimate of total size for this instance will be the following:

X1 = 24 + (40 * 1999) = 79960
Y1 = 352 + (96 * 10) = 1312

TS = 79960 + (1312 * 1999 * 10) = 26306840 Bytes (i.e. ~26.3 Meg)

· Please note the assumptions of an aveage of 10 columns per table and only 2000 tables are totally arbitrary.

· Also note that the data dictionary can temporarily grow beyond this size because of the dynamic nature of the Cache.
Monitoring the Data Dictionary Cache
The data dictionary cache can be monitored via the following onstat command:
onstat –g dic

Example:

(informix) /home/informix > onstat -g dic

IBM Informix Dynamic Server Version 10.00.FC4 -- On-Line -- Up 4 days 22:08:26 -- 42460 Kbytes

Dictionary Cache: Number of lists: 31, Maximum list size: 10

list# size refcnt dirty? heapptr table name

--

 0 2 0 no c000000003226838 stores_demo@ids10_shm:informix.sysxasourcetypes

 0 no c00000000312b838 stores_demo@ids10_shm:informix.sysindexes

 1 1 0 no c0000000031f9038 stores_demo@ids10_shm:informix.sysdefault
 …

 …

 …

 30 1 0 no c000000003221838 stores_demo@ids10_shm:informix.systracemsgs

Total number of dictionary entries: 62
The onstat –g dic output has the following fields:

Field

Description

Number of lists
Number of buckets that DD_HASHSIZE specifies

Maximum list size
Number of tables that allowed in each bucket

List #

Bucket number

Size

Number of tables in the bucket

Refcnt

Number of user sessions currently attached to the entry.

Dirty

Flag indicating Data Dictionary entry is no longer valid.
Heapptr

Heap Pointer

Table Name

Name of the table that data dictionary entry describes.

If you need to check the individual Data Dictionary entry, or entries, for a table, you can accomplish this by doing the following:

onstat –g dic <table name>

Cleaning the Data Dictionary Cache
The data dictionary cache is cleaned by using a Least Recently Used algorithm. The cache is most commonly cleaned only under the following conditions:

· A statement is freed resulting in a refcnt of 0, and DD_HASHMAX having been exceeded for that list.

· A statement is freed resulting in a refcnt of 0, and the entry is marked as Dirty.
PAGE
6

